jueves, 31 de julio de 2008

comunicacion satelital

En las comunicaciones por satélite, las ondas electromagnéticas se transmiten gracias a la presencia en el espacio de satélites artificiales situados en órbita alrededor de la Tierra.

Tipos de satélites de comunicaciones


El ACRIMSat

Un satélite actúa básicamente como un repetidor situado en el espacio: recibe las señales enviadas desde la estación terrestre y las reemite a otro satélite o de vuelta a los receptores terrestres. En realidad hay dos tipos de satélites de comunicaciones:

  • Satélites pasivos. Se limitan a reflejar la señal recibida sin llevar a cabo ningúna otra tarea.
  • Satélites activos.

Los satélites y sus órbitas

Los satélites son puestos en órbita mediante cohetes espaciales que los sitúan circundando la Tierra a distancias relativamente cercanas fuera de la atmósfera. Los tipos de satélites según sus órbitas son:

  • Satélites LEO (Low Earth Orbit, que significa órbitas bajas) Orbitan la Tierra a una distancia de 160-2000 km y su velocidad les permite dar una vuelta al mundo en 90 minutos. Se usan para proporcionar datos geológicos sobre movimiento de placas terrestres y para la industria de la telefonía satélite.
  • Satélites MEO (Medium Earth Orbit, órbitas medias). Son satélites con órbitas medianamente cercanas, de unos 10.000 km. Su uso se destina a comunicaciones de telefonía y televisión, y a las mediciones de experimentos espaciales.
  • Satélites HEO (Highly Elliptical Orbit, órbitas muy elípticas). Estos satélites no siguen una órbita circular, sino que su órbita es elíptica. Esto supone que alcanzan distancias mucho mayores en el punto de órbita más alejada. A menudo se utilizan para cartografiar la superficie de la Tierra, ya que pueden detectar un gran ángulo de superficie terrestre
  • Satélites GEO. Tienen una velocidad de traslación igual a la velocidad de rotación de la Tierra, lo que supone que se encuentren suspendidos sobre un mismo punto del globo terrestre. Por eso se llaman satélites geoestacionarios. Para que la Tierra y el satélite igualen sus velocidades es necesario que este último se encuentre a una distancia fija de 35.800 km sobre el ecuador. Se destinan a emisiones de televisión y de telefonía, a la transmisión de datos a larga distancia, y a la detección y difusión de datos meteorológicos.

Antenas parabólicas

Las antenas utilizadas preferentemente en las comunicaciones vía satélites son las antenas parabólicas, cada vez más frecuentes en las terrazas y tejados de nuestras ciudades. Tienen forma de parábola y la particularidad de que las señales que inciden sobre su superficie se reflejan e inciden sobre el foco de la parábola, donde se encuentra el elemento receptor.

Son antenas parabólicas de foco primario. Es importante que la antena esté correctamente orientada hacia el satélite, de forma que las señales lleguen paralelas al eje de la antena. Son muy utilizadas como antenas de instalaciones colectivas.

Una variante de este tipo de antena parabólica es la antena offset; este tipo de antena tiene un tamaño más reducido, y obtiene muy buen rendimiento. La forma parabólica de la superficie reflectante hace que las señales, al reflejarse, se concentren en un punto situado por debajo del foco de parábola. Por sus reducidas dimensiones se suelen utilizar en instalaciones individuales de recepción de señales de TV y datos vía satélite.

Otro tipo particular es la antena Cassegrain, que aumenta la eficacia y el rendimiento respecto a las anteriores y disponer de dos reflectores: el primario o parábola más grande, donde inciden los haces de señales es un primer contacto, y un reflector secundario (subreflector).

Fibra óptica

La fibra óptica es un conductor de ondas en forma de filamento, generalmente de vidrio, aunque también puede ser de materiales plásticos. La fibra óptica es capaz de dirigir la luz a lo largo de su longitud usando la reflexión total interna. Normalmente la luz es emitida por un láser o un LED.

Las fibras son ampliamente utilizadas en telecomunicaciones, ya que permiten enviar gran cantidad de datos a gran velocidad, mayor que las comunicaciones de radio y cable. También se utilizan para redes locales. Son el medio de transmisión inmune a las interferencias por excelencia. Tienen un costo elevado.

Historia

Como resultado de estudios en física enfocados de la óptica, se descubrió un nuevo empleo para la luz llamado rayo láser. Este ultimo es usado con mayor vigor en el área de las telecomunicaciones debido a lo factible que es enviar mensajes con altas velocidades y con una amplia cobertura. Sin embargo, no existía un conducto para hacer viajar los fotones originados por el láser.

La posibilidad de controlar un rayo de luz, dirigirlo hacia una trayectoria recta se conoce desde hace mucho tiempo. El físico irlandés John Tyndall descubrió que la luz podía viajar dentro de un material (agua), curvándose por reflexión interna y en 1870 desmostró sus estudios a los miembros de la Royal Society. Este principio fue utilizado en su época para iluminar corrientes del agua en fuentes públicas. Más tarde J.L. Baird registró patentes que describían la utilización de bastones sólidos de vidrio en la trasmisión de luz, para su empleo en un primitivo sistema de televisión de colores.

El gran problema, sin embargo, es que las técnicas y los materiales usados no permitían la trasmisión de luz con buen rendimiento. Las pérdidas eran tan grandes y no habían dispositivos de acoplamiento óptico.

Solamente en 1950 las fibras ópticas comenzaron a interesar a los investigadores, con muchas aplicaciones prácticas que estaban siendo desarrolladas. En 1952, el físico Narinder Singh Kapany, apoyándose en los estudios de John Tyndall, realizó experimentos que condujeron a la invención de la fibra óptica.

Uno de los primeros usos de la fibra óptica fue emplear un haz de fibras para la transmisión de imágenes, que se usó en el endoscopio médico. Usando la fibra óptica, se consiguió un endoscopio semiflexible, el cual fue patentado por la Universidad de Michigan en 1956. En este invento se usaron unas nuevas fibras forradas con un material de bajo índice de refracción, ya que antes se impregnaban con aceites o ceras.

Charles Kao, en su tesis doctoral de 1956, estimó que las máximas pérdidas que debería tener la fibra óptica, para que resultara práctica en enlaces de comunicaciones, eran de 20 dB/km. En 1970 los investigadores Maurer, Keck, Schultz y Zimar que trabajaban para Corning Glass fabricaron la primera fibra óptica aplicando impurezas de titanio en sílice. Las pérdidas eran de 17 dB/km. Durante esta década las técnicas de fabricación se mejoraron, consiguiendo pérdidas de tan solo 0,5 dB/km. Y en 1978 ya se transmitía a 10 Gb km/segundos.

En 1966 un comunicado dirigido a la British Association for the Advancement of Science, los investigadores Charles Kao y G.A. Hockham, de Inglaterra, propusieron el uso de fibras de vidrio y luz, en lugar de electricidad y conductores metálicos, en la trasmisión de mensajes telefónicos. La obtención de tales fibras exigió grandes esfuerzos de los investigadores, ya que las fibras hasta entonces presentaban pérdidas de orden de 100 dB por kilómetro, además de una banda pasante estrecha y una enorme fragilidad mecánica. Mientras tanto, como resultado de los esfuerzos, se hicieron nuevas fibras con atenuación de 20 dB por kilómetro y una banda pasante de 1 GHz para un largo de 1 km, con la perspectiva de sustituir los cables coaxiales. La utilización de fibras de 100 µm de diámetro, envueltas en nylon resistente, permitirían la construcción de hilos tan fuertes que no puedan ser rotos con las manos. Hoy ya existen fibras ópticas con atenuaciones tan pequeñas como de 1 dB por kilómetro, lo que es muchísimo menor a las pérdidas de un cable coaxial.

El 22 de abril de 1977, General Telephone and Electronics envió la primera transmisión telefónica a través de fibra óptica, en 6 Mbit/s, en Long Beach, California.

El amplificador que marcó un antes y un después en el uso de la fibra óptica en conexiones interurbanas, reduciendo el coste de ellas, fue el amplificador óptico inventado por David Payne de la Universidad de Southampton, y por Emmanuel Desurvire en los laboratorios de Bell. A los cuales les fue dada la medalla Benjamin Franklin en 1988.

El primer enlace transoceánico con fibra óptica fue el TAT-8 que comenzó a operar en 1988. Desde entonces se ha empleado fibra óptica en multitud de enlaces transoceánicos o entre ciudades, y paulatinamente se va extendiendo su uso desde las redes troncales de las operadoras hacia los usuarios finales.

Aplicaciones

Su uso es muy variado, desde comunicaciones digitales, pasando por sensores y llegando a usos decorativos, como árboles de navidad, veladores y otros elementos similares.

Comunicaciones con fibra óptica

La fibra óptica se emplea como medio de transmisión para las redes de telecomunicaciones, ya que por su flexibilidad los conductores ópticos pueden agruparse formando cables. Las fibras usadas en este campo son de plástico o de vidrio, y algunas veces de los dos tipos. Para usos interurbanos son de vidrio, por la baja atenuación que tienen.

Para las comunicaciones se emplean fibras multimodo y monomodo, usando las multimodo para distancias cortas (hasta 5000 m) y las monomodo para acoplamientos de larga distancia. Debido a que las fibras monomodo son más sensibles a los empalmes, soldaduras y conectores, las fibras y los componentes de éstas son de mayor costo que los de las fibras multimodo.

Sensores de fibra óptica

Las fibras ópticas se pueden utilizar como sensores para medir la tensión, la temperatura, la presión y otros parámetros. El tamaño pequeño y el hecho de que por ellas no circula corriente eléctrica le da ciertas ventajas respecto al sensor eléctrico.

Las fibras ópticas se utilizan como hidrófonos para los sismos o aplicaciones de sónar. Se ha desarrollado sistemas hidrofónicos con más de 100 sensores usando la fibra óptica. Los hidrófonos son usados por la industria de petróleo así como las marinas de guerra de algunos países. La compañía alemana Sennheiser desarrolló un micrófono que trabajaba con un láser y las fibras ópticas.

Los sensores de fibra óptica para la temperatura y la presión se han desarrollado para pozos petrolíferos. Estos sensores pueden trabajar a mayores temperaturas que los sensores de semiconductores.

Otro uso de la fibra óptica como un sensor es el giroscopio óptico que usa el Boeing 767 y el uso en microsensores del hidrógeno.

Más usos de la fibra óptica

  • Se puede usar como una guía de onda en aplicaciones médicas o industriales en las que es necesario guiar un haz de luz hasta un blanco que no se encuentra en la línea de visión.
  • La fibra óptica se puede emplear como sensor para medir tensiones, temperatura, presión así como otros parámetros.
  • Es posible usar latiguillos de fibra junto con lentes para fabricar instrumentos de visualización largos y delgados llamados endoscopios. Los endoscopios se usan en medicina para visualizar objetos a través de un agujero pequeño. Los endoscopios industriales se usan para propósitos similares, como por ejemplo, para inspeccionar el interior de turbinas.
  • Las fibras ópticas se han empleado también para usos decorativos incluyendo iluminación, árboles de Navidad.
  • Líneas de abonado
  • Las fibras ópticas son muy usadas en el campo de la iluminación. Para edificios donde la luz puede ser recogida en la azotea y ser llevada mediante fibra óptica a cualquier parte del edificio.
  • También es utilizada para trucar el sistema sensorial de los taxis provocando que el taxímetro (algunos le llaman cuentafichas) no marque el costo real del viaje.
  • Se emplea como componente en la confección del hormigón translúcido, invención creada por el arquitecto húngaro Ron Losonczi, que consiste en una mezcla de hormigón y fibra óptica formando un nuevo material que ofrece la resistencia del hormigón pero adicionalmente, presenta la particularidad de dejar traspasar la luz de par en par.

Características

La fibra óptica es una guía de ondas dieléctrica que opera a frecuencias ópticas.

Núcleo y revestimiento de la fibra óptica.

Núcleo y revestimiento de la fibra óptica.

Cada filamento consta de un núcleo central de plástico o cristal (óxido de silicio y germanio) con un alto índice de refracción, rodeado de una capa de un material similar con un índice de refracción ligeramente menor. Cuando la luz llega a una superficie que limita con un índice de refracción menor, se refleja en gran parte, cuanto mayor sea la diferencia de índices y mayor el ángulo de incidencia, se habla entonces de reflexión interna total.

Así, en el interior de una fibra óptica, la luz se va reflejando contra las paredes en ángulos muy abiertos, de tal forma que prácticamente avanza por su centro. De este modo, se pueden guiar las señales luminosas sin pérdidas por largas distancias.

Funcionamiento

Los principios básicos de funcionamiento se justifican aplicando las leyes de la óptica geométrica, principalmente, la ley de la refracción (principio de reflexión interna total) y la ley de Snell.

Su funcionamiento se basa en transmitir por el núcleo de la fibra un haz de luz, tal que este no atraviese el núcleo, sino que se refleje y se siga propagando. Esto se consigue si el índice de refracción del núcleo es mayor al índice de refracción del revestimiento, y también si el ángulo de incidencia es superior al ángulo limite.

Ventajas

  • Su ancho de banda es muy grande (teóricamente de hasta 1 THz), mediante técnicas de multiplexación por división de frecuencias (WDM/DWDM), que permiten enviar hasta 100 haces de luz (cada uno con una longitud de onda diferente) a una velocidad de 10 Gb/s cada uno por una misma fibra, se llegan a obtener velocidades de transmisión totales de 10 Tb/s.
  • Es inmune totalmente a las interferencias electromagnéticas.

Desventajas

A pesar de las ventajas antes enumeradas, la fibra óptica presenta una serie de desventajas frente a otros medios de transmisión, siendo las más relevantes las siguientes:

  • La alta fragilidad de las fibras.
  • Necesidad de usar transmisores y receptores más caros
  • Los empalmes entre fibras son difíciles de realizar, especialmente en el campo, lo que dificulta las reparaciones en caso de rotura del cable
  • No puede transmitir electricidad para alimentar repetidores intermedios
  • La necesidad de efectuar, en muchos casos, procesos de conversión eléctrica-óptica
  • La fibra óptica convencional no puede transmitir potencias elevadas.[1]
  • No existen memorias ópticas

Tipos

Las diferentes trayectorias que puede seguir un haz de luz en el interior de una fibra se denominan modos de propagación. Y según el modo de propagación tendremos dos tipos de fibra óptica: multimodo y monomodo.

Tipos de fibras óptica.

Tipos de fibras óptica.

Fibra multimodo

Una fibra multimodo es aquella en la que los haces de luz pueden circular por más de un modo o camino. Esto supone que no llegan todos a la vez. Una fibra multimodo puede tener más de mil modos de propagación de luz. Las fibras multimodo se usan comúnmente en aplicaciones de corta distancia, menores a 1 km; es simple de diseñar y económico.

Su distancia máxima es de 2 km y usan diodos láser de baja intensidad.

El núcleo de una fibra multimodo tiene un índice de refracción superior, pero del mismo orden de magnitud, que el revestimiento. Debido al gran tamaño del núcleo de una fibra multimodo, es más fácil de conectar y tiene una mayor tolerancia a componentes de menor precisión.

Dependiendo el tipo de índice de refracción del núcleo, tenemos dos tipos de fibra multimodo:

  • Índice escalonado: en este tipo de fibra, el núcleo tiene un índice de refracción constante en toda la sección cilíndrica, tiene alta dispersión modal.
  • Índice gradual: mientras en este tipo, el índice de refracción no es constante, tiene menor dispersión modal y el núcleo se constituye de distintos materiales.

Fibra monomodo

Una fibra monomodo es una fibra óptica en la que sólo se propaga un modo de luz. Se logra reduciendo el diámetro del núcleo de la fibra hasta un tamaño (8,3 a 10 micrones) que sólo permite un modo de propagación. Su transmisión es paralela al eje de la fibra. A diferencia de las fibras multimodo, las fibras monomodo permiten alcanzar grandes distancias (hasta 100 km máximo, mediante un láser de alta intensidad) y transmitir elevadas tasas de información (decenas de Gb/s).

Componentes de la fibra óptica

Dentro de los componentes que se usan en la fibra óptica caben destacar los siguientes: los conectores, el tipo de emisor del haz de luz, los conversores de luz, etc.

Tipos de conectores

Estos elementos se encargan de conectar las líneas de fibra a un elemento, ya puede ser un transmisor o un receptor. Los tipos de conectores disponibles son muy variados, entre los que podemos encontrar se hallan los siguientes:

Tipos de conectores de la fibra óptica.

Tipos de conectores de la fibra óptica.

  • FC, que se usa en la transmisión de datos y en las telecomunicaciones.
  • FDDI, se usa para redes de fibra óptica.
  • LC y MT-Array que se utilizan en transmisiones de alta densidad de datos.
  • SC y SC-Dúplex se utilizan para la transmisión de datos.
  • ST se usa en redes de edificios y en sistemas de seguridad.

Emisores del haz de luz

Estos dispositivos se encargan de emitir el haz de luz que permite la transmisión de datos, estos emisores pueden ser de dos tipos:

  • LEDs. Utilizan una corriente de 50 a 100 mA, su velocidad es lenta, solo se puede usar en fibras multimodo, pero su uso es fácil y su tiempo de vida es muy grande, además de ser económicos.
  • Lasers. Este tipo de emisor usa una corriente de 5 a 40 mA, son muy rápidos, se puede usar con los dos tipos de fibra, monomodo y multimodo, pero por el contrario su uso es difícil, su tiempo de vida es largo pero menor que el de los LEDs y también son mucho más costosos.

Conversores Luz-Corriente eléctrica

Este tipo de conversores convierten las señales ópticas que proceden de la fibra en señales eléctricas. Se limitan a obtener una corriente a partir de la luz modulada incidente, esta corriente es proporcional a la potencia recibida, y por tanto, a la forma de onda de la señal moduladora.

Se fundamenta en el fenómeno opuesto a la recombinación, es decir, en la generación de pares electrón-hueco a partir de los fotones. El tipo más sencillo de detector corresponde a una unión semiconductora P-N.

Las condiciones que debe cumplir un fotodetector para su utilización en el campo de las comunicaciones, son las siguientes:

  • La corriente inversa (en ausencia de luz) debe de ser muy pequeña, para así poder detectar señales ópticas muy débiles (alta sensibilidad).
  • Rapidez de respuesta (gran ancho de banda).
  • El nivel de ruido generado por el propio dispositivo ha de ser mínimo.

Hay dos tipos de detectores los fotodiodos PIN y los de avalancha APD.

  • Detectores PIN: Su nombre viene de que se componen de una unión P-N y entre esa unión se intercala una nueva zona de material intrínseco (I), la cual mejora la eficacia del detector.

Se utiliza principalmente en sistemas que permiten una fácil discriminación entre posibles niveles de luz y en distancias cortas.

  • Detectores APD: El mecanismo de estos detectores consiste en lanzar un electrón a gran velocidad (con la energía suficiente), contra un átomo para que sea capaz de arrancarle otro electrón.

Estos detectores se pueden clasificar en tres tipos:

  • de silicio: presentan un bajo nivel de ruido y un rendimiento de hasta el 90% trabajando en primera ventana. Requieren alta tensión de alimentación (200-300V).
  • de germanio: aptos para trabajar con longitudes de onda comprendidas entre 1000 y 1300 nm y con un rendimiento del 70%.
  • de compuestos de los grupos III y V.

Cables de fibra óptica

Un cable de fibra óptica esta compuesto por un grupo de fibras ópticas por el cual se transmiten señales luminosas. Las fibras ópticas comparten su espacio con hiladuras de aramida que le confieren la necesaria resistencia a la tracción.

Sección de un cable de fibra óptica.

Sección de un cable de fibra óptica.

Los cables de fibra óptica proporcionan una alternativa sobre los coaxiales en la industria de la electrónica y las telecomunicaciones. Así, un cable con 8 fibras ópticas tiene un tamaño bastante más pequeño que los utilizados habitualmente, puede soportar las mismas comunicaciones que 60 cables de 1623 pares de cobre o 4 cables coaxiales de 8 tubos, todo ello con una distancia entre repetidores mucho mayor.

Por otro lado, el peso del cable de fibra óptica es muchísimo menor que el de los coaxiales, ya que una bobina del cable de 8 fibras antes citado puede pesar del orden de 30 kg/km, lo que permite efectuar tendidos de 2 a 4 km de una sola vez, mientras que en el caso de los cables de cobre no son prácticas distancias superiores a 250 - 300 m.

Conectores de cable de fibra óptica.

Conectores de cable de fibra óptica.

Conectores

Los conectores más comunes usados en la fibra óptica para redes de área local son los conectores ST y SC.

El conector SC (Straight Connection) es un conector de inserción directa que suele utilizarse en conmutadores Ethernet de tipo Gigabit. El conector ST (Straight Tip) es un conector similar al SC, pero requiere un giro del conector para su inserción, de modo similar a los conectores coaxiales.

Láser

Un láser (Light Amplification by Stimulated Emission of Radiation, Amplificación de Luz por Emisión Estimulada de Radiación) es un dispositivo que utiliza un efecto de la mecánica cuántica, la emisión inducida o estimulada, para generar un haz de luz coherente de un medio adecuado y con el tamaño, la forma y la pureza controlados.

Historia


En 1916, Albert Einstein estableció los fundamentos para el desarrollo de los láseres y de sus predecesores, los máseres (que emiten microondas), utilizando la ley de radiación de Max Planck basada en los conceptos de emisión espontánea e inducida de radiación. La teoría fue olvidada hasta después de la Segunda Guerra Mundial, cuando fue demostrada definitivamente por Willis Eugene Lamb y R. C. Rutherford.

En 1953, Charles H. Townes y los estudiantes de postgrado James P. Gordon y Herbert J. Zeiger construyeron el primer máser: un dispositivo que funcionaba con los mismos principios físicos que el láser pero que produce un haz coherente de microondas. El máser de Townes era incapaz de funcionar en continuo. Nicolay Gennadiyevich Basov y Aleksandr Mikhailovich Prokhorov de la Unión Soviética trabajaron independientemente en el oscilador cuántico y resolvieron el problema de obtener un máser de salida de luz continua, utilizando sistemas con más de dos niveles de energía. Townes, Basov y Prokhorov compartieron el Premio Nobel de Física en 1964 por "los trabajos fundamentales en el campo de la electrónica cuántica", los cuales condujeron a la construcción de osciladores y amplificadores basados en los principios de los máser-láser.

Townes y Arthur Leonard Schawlow son considerados los inventores del láser, el cual patentaron en 1960. Dos años después, Robert Hall inventa el láser semiconductor. En 1969 se encuentra la primera aplicación industrial del láser al ser utilizado en las soldaduras de los elementos de chapa en la fabricación de vehículos y, al año siguiente Gordon Gould patenta otras muchas aplicaciones prácticas para el láser.

El 16/05/1980, un grupo de físicos de la Universidad de Hull liderados por Geoffrey Pret registran la primera emisión láser en el rango de los rayos X. Cinco años después se comienza a comercializar el disco compacto, donde un haz láser de baja potencia "lee" los datos codificados en forma de pequeños orificios (puntos y rayas) sobre un disco óptico con una cara reflectante. Posteriormente esa secuencia de datos digitales se transforman en una señal analógica permitiendo la escucha de los archivos musicales. Inmediatamente después la tecnología desarrollada se usa en el campo del almacenamiento masivo de datos. En 1994 en el Reino Unido, se utiliza por primera vez la tecnología láser en cinemómetros para detectar conductores con exceso de velocidad. Posteriormente se extiende su uso por todo el mundo.

Ya en el siglo XXI, científicos de la Universidad de St. Andrews crean un láser que puede manipular objetos muy pequeños. Al mismo tiempo, científicos japoneses crean objetos del tamaño de un glóbulo rojo utilizando el láser. En 2002, científicos australianos "teletransportan" con éxito un haz de luz láser de un lugar a otro.[1] Dos años después el escáner láser permite al Museo Británico efectuar exhibiciones virtuales.[2] En 2006, científicos de la compañía Intel descubren la forma de trabajar con un chip láser hecho con silicio abriendo las puertas para el desarrollo de redes de comunicación mucho más rápidas y eficientes.[3

Procesos

Componentes principales:1. Medio activo para la formación del láser2. Energía bombeada para el láser3. Espejo reflectante al 100%4. Espejo reflectante al 99%5. Emisión del rayo láser

Componentes principales:
1. Medio activo para la formación del láser
2. Energía bombeada para el láser
3. Espejo reflectante al 100%
4. Espejo reflectante al 99%
5. Emisión del rayo láser

Los láseres constan de un medio activo capaz de generar el láser. Hay cuatro procesos básicos que se producen en la generación del láser, denominados bombeo, emisión espontánea de radiación, emisión estimulada de radiación y absorción.

Bombeo

Se provoca mediante una fuente de radiación como puede ser una lámpara, el paso de una corriente eléctrica o el uso de cualquier otro tipo de fuente energética que provoque una emisión.

Emisión espontánea de radiación [

Los electrones que vuelven al estado fundamental emiten fotones. Es un proceso aleatorio y la radiación resultante está formada por fotones que se desplazan en distintas direcciones y con fases distintas generándose una radiación monocromática incoherente.

Emisión estimulada de radiación

La emisión estimulada, base de la generación de radiación de un láser, se produce cuando un átomo en estado excitado recibe un estímulo externo que lo lleva a emitir fotones y así retornar a un estado menos excitado. El estímulo en cuestión proviene de la llegada de un fotón con energía similar a la diferencia de energía entre los dos estados. Los fotones así emitidos por el átomo estimulado poseen fase, energía y dirección similares a las del fotón externo que les dio origen. La emisión estimulada descrita es la raíz de muchas de las características de la luz láser. No sólo produce luz coherente y monocroma, sino que también "amplifica" la emisión de luz, ya que por cada fotón que incide sobre un átomo excitado se genera otro fotón.

Absorción

Proceso mediante el cual se absorbe un fotón. El sistema atómico se excita a un estado de energía más alto, pasando un electrón al estado metaestable. Este fenómeno compite con el de la emisión estimulada de radiación.

Aplicaciones

El tamaño de los láseres varía ampliamente, desde diodos láser microscópicos (arriba) con numerosas aplicaciones, al láser de cristales de neodimio con un tamaño similar al de un campo de fútbol, (abajo) usado para la fusión de confinamiento inercial,  investigación sobre armas nucleares de destrucción masiva u otros experimentos físicos en los que se presenten altas densidades de energía

El tamaño de los láseres varía ampliamente, desde diodos láser microscópicos (arriba) con numerosas aplicaciones, al láser de cristales de neodimio con un tamaño similar al de un campo de fútbol, (abajo) usado para la fusión de confinamiento inercial, investigación sobre armas nucleares de destrucción masiva u otros experimentos físicos en los que se presenten altas densidades de energía

Cuando se inventó en 1960, se denominaron como "una solución buscando un problema a resolver". Desde entonces se han vuelto omnipresentes. Se pueden encontrar en miles de variadas aplicaciones en cualquier sector de la sociedad actual. Estas incluyen campos tan dispares como la electrónica de consumo, las tecnologías de la información (informática), análisis en ciencia, métodos de diagnóstico en medicina, así como el mecanizado, soldadura o sistemas de corte en sectores industriales y militares.

En bastantes aplicaciones, los beneficios de los láseres se deben a sus propiedades físicas como la coherencia, la alta monocromaticidad y la capacidad de alcanzar potencias extremadamente altas. A modo de ejemplo, un haz láser altamente coherente puede ser enfocado por debajo de su límite de difracción que, a longitudes de onda visibles, corresponde solamente a unos pocos nanómetros. Esta propiedad permite al láser grabar gigabytes de información en las microscópicas cavidades de un DVD o CD. También permite a un láser de media o baja potencia alcanzar intensidades muy altas y usarlo para cortar, quemar o incluso sublimar materiales.

El rayo láser se emplea en el proceso de fabricación de grabar o marcar metales, plásticos y vidrio. Otros usos son:

  • Diodos láser, usados en punteros láser, impresoras laser, y reproductores de CD, DVD, Blu-Ray, HD-DVD;
  • Láser de punto cuántico
  • Láser de dióxido de carbono - usado en industria para corte y soldado
  • Láser Excimer, que produce luz ultravioleta y se utiliza en la fabricación de semiconductores y en la cirugía ocular Lasik;
  • Láser neodimio-YAG, un láser de alto poder que opera con luz infrarroja; se utiliza para cortar, soldar y marcar metales y otros materiales.
  • YAG dopado con erbio, 1645 nm
  • YAG dopado con tulio, 2015 nm
  • YAG dopado con holmio, 2090 nm, un láser de alto poder que opera con luz infrarroja, es absorbido de manera explosiva por tejidos impregnados de humedad en secciones de menos de un milímetro de espesor. Generalmente opera en modo pulsante y pasa a través de dispositivos quirúrgicos de fibra óptica. Se utiliza para quitar manchas de los dientes, vaporizar tumores cancerígenos y deshacer cálculos renales y vesiculares.
  • Láser de Zafiro dopado con Titanio, es un láser infrarrojo fácilmente sintonizable que se utiliza en espectroscopía.
  • Láser de fibra dopada con erbio, un tipo de láser formado de una fibra óptica especialmente fabricada, que se utiliza como amplificador para comunicaciones ópticas.
  • Láser de colorante, formados por un colorante organico operan en el UV-VIS de modo pulsado, usados en espectroscopia por su facil sintonizacion y su bajo precio.

Radiofrecuencia

radiofrecuencia, también denominado espectro de radiofrecuencia o RF, se aplica a la porción menos energética del espectro electromagnético, situada entre unos 3 Hz y unos 300 GHz. Las ondas electromagnéticas de esta región del espectro se pueden transmitir aplicando la corriente alterna originada en un generador a una antena. La radiofrecuencia se puede dividir en las siguientes bandas del espectro:

Nombre

Abreviatura inglesa

Banda ITU

Frecuencias

Longitud de onda




Inferior a 3 Hz

> 100.000 km

Extra baja frecuencia Extremely low frequency

ELF

1

3-30 Hz

100.000 km – 10.000 km

Super baja frecuencia Super low frequency

SLF

2

30-300 Hz

10.000 km – 1000 km

Ultra baja frecuencia Ultra low frequency

ULF

3

300–3000 Hz

1000 km – 100 km

Muy baja frecuencia Very low frequency

VLF

4

3–30 kHz

100 km – 10 km

Baja frecuencia Low frequency

LF

5

30–300 kHz

10 km – 1 km

Media frecuencia Medium frequency

MF

6

300–3000 kHz

1 km – 100 m

Alta frecuencia High frequency

HF

7

3–30 MHz

100 m – 10 m

Muy alta frecuencia Very high frequency

VHF

8

30–300 MHz

10 m – 1 m

Ultra alta frecuencia Ultra high frequency

UHF

9

300–3000 MHz

1 m – 100 mm

Super alta frecuencia Super high frequency

SHF

10

3-30 GHz

100 mm – 10 mm

Extra alta frecuencia Extremely high frequency

EHF

11

30-300 GHz

10 mm – 1 mm




Por encima de los 300 GHz

<>

A partir de 1 GHz las bandas entran dentro del espectro de las microondas. Por encima de 300 GHz la absorción de la radiación electromagnética por la atmósfera terrestre es tan alta que la atmósfera se vuelve opaca a ella, hasta que, en los denominados rangos de frecuencia infrarrojos y ópticos, vuelve de nuevo a ser transparente.

Las bandas ELF, SLF, ULF y VLF comparten el espectro de la AF (audiofrecuencia), que se encuentra entre 20 y 20000 Hz aproximadamente. Sin embargo, éstas se tratan de ondas de presión, como el sonido, por lo que se desplazan a la velocidad del sonido sobre un medio material. Mientras que las ondas de radiofrecuencia, al ser ondas electromagnéticas, se desplazan a la velocidad de la luz y sin necesidad de un medio material.


Los conectores eléctricos diseñados para trabajar con frecuencias de radio se conocen como conectores RF. RF también es el nombre del conector estándar de audio/video, también conocido como BNC (BayoNet Connector).



Usos de la radiofrecuencia

Uno de sus primeros usos fue en el ámbito naval, para el envío de mensajes en código Morse

entre los buques y tierra o entre buques.

Actualmente, la radio toma muchas otras formas, incluyendo redes inalámbricas, comunicaciones móviles de todo tipo, así como la radiodifusión.

Antes de la llegada de la televisión, la radiodifusión comercial incluía no solo noticias y música, sino dramas, comedias, shows de variedades, concursos y muchas otras formas de entretenimiento, siendo la radio el único medio de representación dramática que solamente utilizaba el sonido.

Otros usos de la radio son:

  • Audio
    • La forma más antigua de radiodifusión de audio fue la radiotelegrafía marin a, ya mínimamente utilizada. Una onda continua (CW), era conmutada on-off por un manipulador para crear código Morse, que se oía en el receptor como un tono intermitente.
    • Música y voz mediante radio en modulación de amplitud (AM).
    • Música y voz, con una mayor fidelidad que la AM, mediante radio en modulación de frecuencia (FM).
    • Música, voz y servicios interactivos con el sistema de radio digital DAB empleando multiplexación en frecuencia OFDM para la transmisión física de las señales.
    • Servicios RDS, en sub-banda de FM, de transmisión de datos que permiten transmitir el nombre de la estación y el título de la canción en curso, además de otras informaciones adicionales.
    • Transmisiones de voz para marina y aviación utilizando modulación de amplitud en la banda de VHF.
    • Servicios de voz utilizando FM de banda estrecha en frecuencias especiales para policía, bomberos y otros organismos estatales.
    • Servicios civiles y militares en alta frecuencia (HF) en la banda de Onda Corta, para comunicación con barcos en alta mar y con poblaciones o instalaciones aisladas y a muy largas distancias.
    • Sistemas telefónicos celulares digitales para uso cerrado (policía, defensa, ambulancias, etc). Distinto de los servicios públicos de telefonía móvil.
  • Telefonía
  • Vídeo
  • Navegación
  • Radar
  • Servicios de emergencia
  • Transmisión de datos por radio digital
  • Calentamiento
  • Fuerza mecánica
  • Otros

Bandas de frecuencia destacadas

General

Frecuencias de radiodifusión y televisión:

  • Radio AM = 530kHz - 1600kHz (MF)
  • TV Banda I (Canales 2 - 6) = 54MHz - 88MHz (VHF)
  • Radio FM Banda II = 88MHz - 108MHz (VHF)
  • TV Banda III (Canales 7 - 13) = 174MHz - 216MHz (VHF)
  • TV Bandas IV y V (Canales 14 - 69) = 512MHz - 806MHz (UHF)

Frecuencias de uso libre por el público

  • PMR 446 (Región 1, Europa y África)
  • FRS (Estados Unidos y otros países de América)

Frecuencias de radioaficionados

El rango de frecuencias permitido a los radioaficionados varían según el país y la región del territorio de ese país. Las señaladas aquí son las bandas más comunes, identificadas por su longitud de onda:

Radioastronomía

Muchos de los objetos astronómicos emiten en radiofrecuencia. En algunos casos en rangos anchos y en otros casos centrados en una frecuencia que se corresponde con una línea espectral,[1] por ejemplo:

  • Línea de HI o hidrógeno atómico. Centrada en 1.4204058 GHz.
  • Línea de CO (transición rotacional 1-0) asociada al hidrógeno molecular. Centrada en 115.271 GHz.

Microondas totty US

Banda

Rango de frecuencia

Origen del nombre

Banda I

hasta 0.2GHz

Banda G

0.2 a 0.25 GHz

Banda P

0.25 a 0.5 GHz

Previous, dado que los primeros rádares del Reino Unido utilizaron esta banda, pero luego pasaron a frecuencias más altas

Banda L / LW

0.5 a 1.5 GHz

Long wave (Onda larga)

Banda S / SW

2 a 4 GHz

Short wave (Onda corta)

Banda C

4 a 8 GHz

Compromiso entre S y X

Banda X

8 a 12 GHz

Usada en la II Guerra Mundial por los sistemas de control de fuego, X de cruz (como la cruz de la retícula de puntería)

Banda Ku

12 a 18 GHz

Kurz-under (bajo la corta)

Banda K

18 a 26 GHz

Alemán Kurz (corta)

Banda Ka

26 a 40 GHz

Kurz-above (sobre la corta)

Banda V

40 a 75 GHz

Very high frequency (Muy alta frecuencia)

Banda W

75 a 111 GHz

W sigue a V en el alfabeto

UE, OTAN

Banda

Rango de frecuencia

Banda A

hasta 0.25 GHz

Banda B

0.25 a 0.5 GHz

Banda C

0.5 a 1.0 GHz

Banda D

1 a 2 GHz

Banda E

2 a 3 GHz

Banda F

3 a 4 GHz

Banda G

4 a 6 GHz

Banda H

6 a 8 GHz

Banda I

8 a 10 GHz

Banda J

10 a 20 GHz

Banda K

20 a 40 GHz

Banda L

40 a 60 GHz

Banda M

60 a 100 GHz